OKLAHOMA STATE UNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERIN G

ECEN 4413 Controls II Fall 1997 Midterm Exam #1

Name :	 	 _
Student ID:	 	

E-Mail Address:

Problem 1: Find the Laplace transform of the periodic waveform, x(t), shown below.

Problem 2:

Use block diagram reduction to rearrange the above block diagram into the form shown below (i.e., H configuration) and find its transfer function, $\frac{Y(s)}{R(s)}$.

Problem 3: For the state variable description,

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t),$$

$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t)$$

if $u(t) = e^{-3t}u_s(t)$, where $u_s(t)$ is the unit step function and initial conditions are all zeros, find y(t).

Problem 4:

Given feedback system shown above, determine the sensitivity of the closed-loop transfer function, $M_c(s)$ with respect to $G_1(s)$ and $G_2(s)$ (i.e., $S_{G_1(s)}^{M_c(s)}$ and $S_{G_2(s)}^{M_c(s)}$). And determine the effects on disturbance rejections (i.e., $\frac{Y(s)}{D_1(s)}$ and $\frac{Y(s)}{D_2(s)}$).